论文标题

在一些$ p $ - adid galois表示和表格班级组中

On some $p$-adic Galois representations and form class groups

论文作者

Jung, Ho Yun, Koo, Ja Kyung, Shin, Dong Hwa, Yoon, Dong Sung

论文摘要

令$ k $是带有整数$ \ MATHCAL {O} _K $的判别$ d_k $的假想二次字段。当$ k $不同于$ \ mathbb {q}(\ sqrt {-1})$和$ \ mathbb {q}(\ sqrt {-3})$时,我们考虑了椭圆形曲线$ e_k $ at $ j(e_k k)= j(e_k)= j(e_k)= j(\ m mathcal paind)的某些特定模型, $ \ mathbb {q}(j(e_k))$。在本文中,对于每个正整数$ n $,我们将$ n $ torsion in $ e_k $ $ n $ torsion积分生成的$ \ mathbb {q} $的扩展字段与$ e class Field $ k _ {(n)} $ k $ k $ modulo $ n \ n \ nathcal {o n \ mathcal {o。通过使用此结果,我们调查了$ e_k $ $ e_k $的Prime $ P $的图像,就班级字段理论而言。其次,我们构建了判别$ d_k $和级别$ n $的确定表单类别组,该组是同构至$ \ mathrm {gal}(k _ {(n)}/\ mathbb {q})$。

Let $K$ be an imaginary quadratic field of discriminant $d_K$ with ring of integers $\mathcal{O}_K$. When $K$ is different from $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, we consider a certain specific model for the elliptic curve $E_K$ with $j(E_K)=j(\mathcal{O}_K)$ which is defined over $\mathbb{Q}(j(E_K))$. In this paper, for each positive integer $N$ we compare the extension field of $\mathbb{Q}$ generated by the coordinates of $N$-torsion points on $E_K$ with the ray class field $K_{(N)}$ of $K$ modulo $N\mathcal{O}_K$. By using this result we investigate the image of a $p$-adic Galois representation attached to $E_K$ for a prime $p$, in terms of class field theory. Second, we construct the definite form class group of discriminant $d_K$ and level $N$ which is isomorphic to $\mathrm{Gal}(K_{(N)}/\mathbb{Q})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源