论文标题
相对于加权高斯措施的Sobolev规范的等效性
Equivalence of Sobolev norms with respect to weighted Gaussian measures
论文作者
论文摘要
我们考虑$ l^p(x,ν; v)$的空间,其中$ x $是可分离的banach空间,$μ$是一种中心的非降级高斯措施,$ν:= ke^{ - u}μ$,具有归一化因子$ k $,$ v $是可分离的Hilbert空间。在本文中,我们证明了w^{1,p}(x,x,v; v)$ f \ in w^{1,x,v; v)$的矢量价值不平等,这使我们可以证明,每一个$ p \ in(1,+\ infty)$中的每一个$ p \ in(+\ infty)$和每个$ k \ in \ mathb n $ in \ mathb n $ in \ mathb n $ sorm in $ w^^w^, $ d_h^k $($ k $ -th malliavin derivative)中的$ l^p(x,ν)$。总而言之,我们将$(t^v(t))的指数衰减估计值_ {t \ geq0} $作为$ t \ rightarrow+\ infty $。有用的工具是对标量扰动的Ornstein-uhlenbeck $(t(t))_ {t \ geq0} $的渐近行为的研究,以及$ | d_ht(t)f | _h^p $的点估计,$ | d_ht(t)f | _h^p $ y MAST $ t(t)
We consider the spaces $L^p(X,ν;V)$, where $X$ is a separable Banach space, $μ$ is a centred non-degenerate Gaussian measure, $ν:=Ke^{-U}μ$ with normalizing factor $K$ and $V$ is a separable Hilbert space. In this paper we prove a vector-valued Poincaré inequality for functions $F\in W^{1,p}(X,ν;V)$, which allows us to show that for every $p\in(1,+\infty)$ and every $k\in\mathbb N$ the norm in $W^{k,p}(X,ν)$ is equivalent to the graph norm of $D_H^k$ (the $k$-th Malliavin derivative) in $L^p(X,ν)$. To conclude, we show exponential decay estimates for $(T^V(t))_{t\geq0}$ as $t\rightarrow+\infty$. Useful tools are the study of the asymptotic behaviour of the scalar perturbed Ornstein-Uhlenbeck $(T(t))_{t\geq0}$, and pointwise estimates for $|D_HT(t)f|_H^p$ by means both of $T(t)|D_Hf|^p_H$ and of $T(t)|f|^p$.