论文标题

光声显微镜的降级卷积神经网络

Denoising convolutional neural networks for photoacoustic microscopy

论文作者

Song, Xianlin, Tang, Kanggao, Wei, Jianshuang, Song, Lingfang

论文摘要

近年来,光声成像是一种新的成像技术,它结合了高分辨率和光学成像的丰富对比度与声学成像高渗透深度的优势。光声成像已被广泛用于生物医学领域,例如脑成像,肿瘤检测等。由于激光脉冲能量的限制,外部环境中的电磁干扰和系统噪声,光声成像中图像信号的信噪比(SNR)通常很低。为了解决光声图像的低SNR问题,我们使用馈电降卷卷积神经网络来进一步处理获得的图像,以获取更高的SNR图像并提高图像质量。我们使用Python语言通过Anaconda来管理引用的Python外部库,并在Pycharm平台上构建降噪的卷积神经网络。我们首先处理并分配了包含400张图像的训练集,然后将其用于网络培训。最后,我们使用一系列脑血管光声显微镜图像对其进行了测试。结果表明,图像的峰值信噪比(PSNR)在DeNoSing降低之前和之后都显着增加。实验结果证实了进给前向前传噪声降噪网络可以有效地提高光感显微镜图像的质量,从而提供了良好的基础图像,从而提高了良好的基础图像的质量。

Photoacoustic imaging is a new imaging technology in recent years, which combines the advantages of high resolution and rich contrast of optical imaging with the advantages of high penetration depth of acoustic imaging. Photoacoustic imaging has been widely used in biomedical fields, such as brain imaging, tumor detection and so on. The signal-to-noise ratio (SNR) of image signals in photoacoustic imaging is generally low due to the limitation of laser pulse energy, electromagnetic interference in the external environment and system noise. In order to solve the problem of low SNR of photoacoustic images, we use feedforward denoising convolutional neural network to further process the obtained images, so as to obtain higher SNR images and improve image quality. We use Python language to manage the referenced Python external library through Anaconda, and build a feedforward noise-reducing convolutional neural network on Pycharm platform.We first processed and segmated a training set containing 400 images, and then used it for network training. Finally, we tested it with a series of cerebrovascular photoacoustic microscopy images.The results show that the peak signal-to-noise ratio (PSNR) of the image increases significantly before and after denoising.The experimental results verify that the feed-forward noise reduction convolutional neural network can effectively improve the quality of photoacoustic microscopic images, which provides a good foundation for the subsequent biomedical research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源