论文标题
Schwarzschild(反)DE STINTER黑洞的稳定性
Stability of Schwarzschild (Anti)de Sitter black holes in Conformal Gravity
论文作者
论文摘要
我们研究了在形状的(Weyl)重力中球形对称,中性和非旋转黑洞的热力学。为此,我们采用不同的方法:(i)评估特定热量; (ii)熵凹的研究; (iii)热力学的几何方法被称为\ textit {热力学几何}; (iv)与平衡和平衡热力学相关的庞加莱方法。我们表明,热力学几何方法也可以应用于共形重力,因为所有关键的热力学变量对Weyl缩放不敏感。前两种方法(i)和(ii)表明,de de Sitter黑洞的熵始终在$ 2/3 \ leq S \ leq 1 $中,而热力学几何形状表明,在$ s = 1 $时,有一个二阶相位过渡到Anti De De de de de de dester Black Black Hole。另一方面,我们从Poincaré方法(IV)获得,其熵为$ S <4/3 $的黑洞是稳定的或以鞍点为单位,而当$ S> 4/3 $时,它们始终不稳定,因此对于这种过渡是否会发生任何明确的答案。
We study the thermodynamics of spherically symmetric, neutral and non-rotating black holes in conformal (Weyl) gravity. To this end, we apply different methods: (i) the evaluation of the specific heat; (ii) the study of the entropy concavity; (iii) the geometrical approach to thermodynamics known as \textit{thermodynamic geometry}; (iv) the Poincaré method that relates equilibrium and out-of-equilibrium thermodynamics. We show that the thermodynamic geometry approach can be applied to conformal gravity too, because all the key thermodynamic variables are insensitive to Weyl scaling. The first two methods, (i) and (ii), indicate that the entropy of a de Sitter black hole is always in the interval $2/3\leq S\leq 1$, whereas thermodynamic geometry suggests that, at $S=1$, there is a second order phase transition to an Anti de Sitter black hole. On the other hand, we obtain from the Poincaré method (iv) that black holes whose entropy is $S < 4/3$ are stable or in a saddle-point, whereas when $S>4/3$ they are always unstable, hence there is no definite answer on whether such transition occurs.