论文标题

基于CMOS的低温控制硅量子电路

CMOS-based cryogenic control of silicon quantum circuits

论文作者

Xue, Xiao, Patra, Bishnu, van Dijk, Jeroen P. G., Samkharadze, Nodar, Subramanian, Sushil, Corna, Andrea, Jeon, Charles, Sheikh, Farhana, Juarez-Hernandez, Esdras, Esparza, Brando Perez, Rampurawala, Huzaifa, Carlton, Brent, Ravikumar, Surej, Nieva, Carlos, Kim, Sungwon, Lee, Hyung-Jin, Sammak, Amir, Scappucci, Giordano, Veldhorst, Menno, Sebastiano, Fabio, Babaie, Masoud, Pellerano, Stefano, Charbon, Edoardo, Vandersypen, Lieven M. K.

论文摘要

最有前途的量子算法需要在靶向实际应用时托管数百万个量子位的量子处理器。大规模量子计算的主要挑战是互连复杂性。在当前的固态固定实施中,稀释冰箱中的量子芯片与室温电子设备之间出现了主要的瓶颈。高级光刻支持在硅中制造CMOS控制电子和Qubits。当电子设备设计以在低温温度下运行时,它最终可以与同一模具或包装上的Qubits集成,从而克服接线瓶颈。在这里,我们报告了一个在3K处运行的低温CMOS控制芯片,该芯片输出了量身定制的微波爆发,以驱动冷却至20MK的硅量子位。我们首先基准对控制芯片进行基准测试,并发现与99.99%的保真度Qubit操作一致的电性能,假设是理想的Qubits。接下来,我们使用它一致地控制实际的硅自旋量子,并发现低温控制芯片与商业仪器具有相同的忠诚度。此外,我们通过编程了许多基准测试协议以及在两个Qubit的量子处理器上的Deutsch-Josza算法来强调控制芯片的广泛功能。这些结果为完全集成的,可扩展的硅量子计算机开辟了道路。

The most promising quantum algorithms require quantum processors hosting millions of quantum bits when targeting practical applications. A major challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, a major bottleneck appears between the quantum chip in a dilution refrigerator and the room temperature electronics. Advanced lithography supports the fabrication of both CMOS control electronics and qubits in silicon. When the electronics are designed to operate at cryogenic temperatures, it can ultimately be integrated with the qubits on the same die or package, overcoming the wiring bottleneck. Here we report a cryogenic CMOS control chip operating at 3K, which outputs tailored microwave bursts to drive silicon quantum bits cooled to 20mK. We first benchmark the control chip and find electrical performance consistent with 99.99% fidelity qubit operations, assuming ideal qubits. Next, we use it to coherently control actual silicon spin qubits and find that the cryogenic control chip achieves the same fidelity as commercial instruments. Furthermore, we highlight the extensive capabilities of the control chip by programming a number of benchmarking protocols as well as the Deutsch-Josza algorithm on a two-qubit quantum processor. These results open up the path towards a fully integrated, scalable silicon-based quantum computer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源