论文标题

混凝土实现和麦卡锡香槟猜想的分析延续

Analytic continuation of concrete realizations and the McCarthy Champagne conjecture

论文作者

Bickel, Kelly, Pascoe, J. E., Tully-Doyle, Ryan

论文摘要

在本文中,我们提供了公式,使一个公式可以在传输函数类型的多变量schur,herglotz和挑选功能之间移动,而没有添加其他奇异性,除了可能来自共形变换本身的极点。在两变量的交换案例中,我们使用规范的de branges-rovnyak模型理论来获得具体实现,从而在分析上通过边界进行内部函数,这些函数在其中一个变量(所谓的准理性函数)中是合理的。然后,我们为麦卡锡的香槟猜想建立了积极的解决方案,以在两变量的准理性函数和$ d $ - 可变量的观点函数的设置中为本地矩阵单调性。

In this paper, we give formulas that allow one to move between transfer function type realizations of multi-variate Schur, Herglotz and Pick functions, without adding additional singularities except perhaps poles coming from the conformal transformation itself. In the two-variable commutative case, we use a canonical de Branges-Rovnyak model theory to obtain concrete realizations that analytically continue through the boundary for inner functions which are rational in one of the variables (so-called quasi-rational functions). We then establish a positive solution to McCarthy's Champagne conjecture for local to global matrix monotonicity in the settings of both two-variable quasi-rational functions and $d$-variable perspective functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源