论文标题

低质量恒星的卵石驱动方案中的行星形成和磁盘质量依赖性

Planet formation and disk mass dependence in a pebble-driven scenario for low mass stars

论文作者

Dash, Spandan, Miguel, Yamila

论文摘要

测得的磁盘质量似乎太低,无法形成观察到的行星系统种群。在这种情况下,我们在卵石积聚方案中开发了人口综合代码,以分析磁盘质量依赖于低质量恒星周围的行星形成。我们将模型基于Ormel等人介绍的分析顺序模型。 2017年并分析因不同初始磁盘质量分布而产生的种群。从种子开始,我们使用卵石吸积过程将行星种植在冰线附近的岩石质量开始,并使用I型I迁移将它们向内迁移。下一个行星越过冰线后,下一个行星会顺序形成。我们探索磁盘质量的不同初始分布,以显示该参数与最终行星种群的依赖性。我们的结果表明,仅当考虑到$ 0.09-0.2 $ $ $ m _ {\ odot} $之间,紧凑的关闭谐振系统只有在考虑到所考虑的磁盘比以下MM磁盘调查所观察到的内容更大时,才能在$ 0.09-0.2 $ $ M _ {\ odot} $之间很普遍。发现形成一个类似火星的行星的最小磁盘质量约为$ 2 \ times 10^{ - 3} $ $ m _ {\ odot} $。磁盘质量分布的较小变化也在模拟行星分布中表现出来。磁盘质量的悖论可能是由于观测中的磁盘质量低估,这是由于磁盘中质量的迅速耗尽,而质量在一百万年内生长在一百万年内或当前星球形成图中的不足。

Measured disk masses seem to be too low to form the observed population of planetary systems. In this context, we develop a population synthesis code in the pebble accretion scenario, to analyse the disk mass dependence on planet formation around low mass stars. We base our model on the analytical sequential model presented in Ormel et al. 2017 and analyse the populations resulting from varying initial disk mass distributions. Starting out with seeds the mass of Ceres near the ice-line formed by streaming instability, we grow the planets using the Pebble Accretion process and migrate them inwards using Type-I migration. The next planets are formed sequentially after the previous planet crosses the ice-line. We explore different initial distributions of disk masses to show the dependence of this parameter with the final planetary population. Our results show that compact close-in resonant systems can be pretty common around M-dwarfs between $0.09-0.2$ $M_{\odot}$ only when the disks considered are more massive than what is being observed by sub-mm disk surveys. The minimum disk mass to form a Mars-like planet is found to be about $2 \times 10^{-3}$ $M_{\odot}$. Small variation in the disk mass distribution also manifest in the simulated planet distribution. The paradox of disk masses might be caused by an underestimation of the disk masses in observations, by a rapid depletion of mass in disks by planets growing within a million years or by deficiencies in our current planet formation picture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源