论文标题
矩形,整数载体和超立方体的超平面
Rectangles, integer vectors and hyperplanes of the hypercube
论文作者
论文摘要
我们介绍了一个非负整数向量的家族 - 原始向量 - 定义了$ c^n的真实仿射立方体的超平面:= \ { - { - 1,1 \}^n $,并研究了它们相对于Cube矩形的性质。结果,我们简短证明,对于小维度($ n \ leq 7 $),可以从其签名的矩形及其签名的cocircuts互补的刻面和偏斜式的cocircit中回收真正的仿射立方体。
We introduce a family of nonnegative integer vectors - primitive vectors - defining hyperplanes of the real affine cube over $C^n:=\{-1,1\}^n$ and study their properties with respect to the rectangles of the cube. As a consequence we give a short proof that, for small dimensions ($n\leq 7$), the real affine cube can be recovered from its signed rectangles and its signed cocircuits complementary of its facets and skew-facets.