论文标题

在迭代功能系统及其拓扑稳定性上

On the Space of Iterated Function Systems and Their Topological Stability

论文作者

Arbieto, Alexander, Trilles, Alexandre

论文摘要

我们研究具有紧凑参数空间的迭代功能系统(IFS)。我们表明,具有相位空间的IFS $ x $的空间是自连续地图$ x $的空间的超空间。通过此结果,我们获得了Hausdorff距离是该空间的天然度量,我们用来定义拓扑稳定性。 然后,我们证明,在IFS的背景下,经典结果表明,阴影特性是拓扑稳定性的必要条件,而添加到扩展性的阴影属性是拓扑稳定性的足够条件。实际上,为了证明这些陈述,我们使用了更强类型的阴影类型,称为一致的阴影属性。 我们还举了一个例子,表明一致的阴影属性与IFS的传统属性定义确实不同。

We study iterated function systems (IFS) with compact parameter space. We show that the space of IFS with phase space $X$ is the hyperspace of the space of self continuous maps of $X$. With this result we obtain that the Hausdorff distance is a natural metric for this space which we use to define topological stability. Then we prove, in the context of IFS, the classical results showing that shadowing property is a necessary condition for topological stability and shadowing property added to expansiveness are a sufficient condition for topological stability. To prove these statements, in fact, we use a stronger type of shadowing, called concordant shadowing property. We also give an example showing that concordant shadowing property is truly different than the traditional definition of shadowing property for IFS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源