论文标题

即使有$ O(1)$行或列,俄罗斯方块也是NP-HARD

Tetris is NP-hard even with $O(1)$ rows or columns

论文作者

Asif, Sualeh, Coulombe, Michael, Demaine, Erik D., Demaine, Martin L., Hesterberg, Adam, Lynch, Jayson, Singhal, Mihir

论文摘要

我们证明,即使仅限于8列或4行,经典的掉落视频游戏Tetris(生存和董事会清算)仍然是NP的零件。我们的减少是从三粒分区的,类似于以前的无限制板尺寸的减少,但包装更好。在正面,我们证明了2列俄罗斯方块(和1行俄罗斯方块)是多项式的。我们还证明,即使板开始空,即使限制在3列或2列或2行或恒定尺寸的零件时,也将俄罗斯方块概括为较大的$ k $ -OMINO零件也是NP填充。最后,我们提出了动画的俄罗斯方块字体。

We prove that the classic falling-block video game Tetris (both survival and board clearing) remains NP-complete even when restricted to 8 columns, or to 4 rows, settling open problems posed over 15 years ago [BDH+04]. Our reduction is from 3-Partition, similar to the previous reduction for unrestricted board sizes, but with a better packing of buckets. On the positive side, we prove that 2-column Tetris (and 1-row Tetris) is polynomial. We also prove that the generalization of Tetris to larger $k$-omino pieces is NP-complete even when the board starts empty, even when restricted to 3 columns or 2 rows or constant-size pieces. Finally, we present an animated Tetris font.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源