论文标题

未经塑造的共同体学,整体Coniveau过滤和Griffiths Group

Unramified cohomology, integral coniveau filtration and Griffiths group

论文作者

Ma, Shouhei

论文摘要

我们证明,k的学位未塑造的提升学具有光滑的复杂的射射品种X和小CH_0(X)的扭转系数,其长度[k/2]的过滤是[K/2],其第一件是K+1级数量的扭转部分的扭转部分。 Griff^{K/2+1}(X)当K均匀并且与较高的Chow组CH^{(K+3)/2}(x,1)相关时。第一篇是对Artin-Mumford不变的概括(K = 2)和Colliot-thelene-voisin不变性(k = 3)。我们还为某些H-综合体组给出了类似的结果。

We prove that the degree k unramified cohomology with torsion coefficients of a smooth complex projective variety X with small CH_0(X) has a filtration of length [k/2], whose first piece is the torsion part of the quotient of the degree k+1 integral singular cohomology by its coniveau 2 subgroup, and whose next graded piece is controlled by the Griffiths group Griff^{k/2+1}(X) when k is even and is related to the higher Chow group CH^{(k+3)/2}(X, 1) when k is odd. The first piece is a generalization of the Artin-Mumford invariant (k=2) and the Colliot-Thelene-Voisin invariant (k=3). We also give an analogous result for certain H-cohomology groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源