论文标题

扫描数据可视化时任务很重要

Task Matters When Scanning Data Visualizations

论文作者

Matzen, Laura, Divis, Kristin, Cronin, Deborah, Haass, Michael

论文摘要

评估数据可视化和视觉分析工具有效性的主要挑战之一是,不同用户可能在不同任务中使用这些工具。在本文中,我们提供了一个简单的示例,说明不同任务如何导致对同一基础数据可视化的不同注意力模式。我们认为,该实验中使用的一般方法可以系统地应用于可视化研究人员开发的任务和特征分类法。使用眼动追踪来研究常见任务对人类如何参与常见类型的可视化类型的影响,将支持对可视化认知的更深入理解,并开发更强大的方法来评估可视化的有效性。

One of the major challenges for evaluating the effectiveness of data visualizations and visual analytics tools arises from the fact that different users may be using these tools for different tasks. In this paper, we present a simple example of how different tasks lead to different patterns of attention to the same underlying data visualizations. We argue that the general approach used in this experiment could be applied systematically to task and feature taxonomies that have been developed by visualization researchers. Using eye tracking to study the impact of common tasks on how humans attend to common types of visualizations will support a deeper understanding of visualization cognition and the development of more robust methods for evaluating the effectiveness of visualizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源