论文标题
无量量子数的排除原则
An Exclusion Principle for Sum-Free Quantum Numbers
论文作者
论文摘要
引入了量子颗粒的假设排除原则,该原理分别概括了费米和玻色子的排除和包容性原理:相关排除原理。可以将无库数的无和条件读取为量子颗粒的排除原理的一种形式。在量子多体系统的框架内分析了这种解释的后果。相关排除原理的一个特定实例可以明确求解,该量子数表现出分形结构,并且是Thue-Thurston序列的相对。可以根据硬核玻色子代数的受限版本的换向版本和反通信关系来确定创建和歼灭操作员的相应代数。
A hypothetical exclusion principle for quantum particles is introduced that generalizes the exclusion and inclusion principles for fermions and bosons, respectively: the correlated exclusion principle. The sum-free condition for Schur numbers can be read off as a form of exclusion principle for quantum particles. Consequences of this interpretation are analysed within the framework of quantum many-body systems. A particular instance of the correlated exclusion principle can be solved explicitly yielding a sequence of quantum numbers that exhibits a fractal structure and is a relative of the Thue-Thurston sequence. The corresponding algebra of creation and annihilation operators can be identified in terms of commutation and anticommutation relations of a restricted version of the hard-core boson algebra.