论文标题
Beauville的代数数字通过Hodge理论表征
Characterization of Beauville's algebraic numbers via Hodge theory
论文作者
论文摘要
我们提供了一组代数数字集的理论表征,该代数数字是由$ \ mathbb {p}^1 $带有四个奇异纤维的椭圆曲线的半椭圆曲线族的完整列表产生的。我们的技术创新是对$ \ mathbb {p}^1 $减去副本上4点的均匀Higgs束的周期性的分析。
We provide a Hodge theoretical characterization of the set of algebraic numbers which arises from the complete list, due to A. Beauville, of semistable families of elliptic curves over $\mathbb{P}^1$ with four singular fibers. Our technical innovation is the analysis of the periodicity of the uniformizing Higgs bundle attached to $\mathbb{P}^1$ minus four points over the field of complex numbers.