论文标题
雨代码融合:代码到代码卷动员预测时空降水
Rain-Code Fusion : Code-to-code ConvLSTM Forecasting Spatiotemporal Precipitation
论文作者
论文摘要
最近,由于气候变化引起的不经验的天气条件,洪水破坏已成为一个社会问题。对大雨的直接反应对于减轻经济损失以及快速恢复至关重要。时空降水的预测可能会提高大坝流入预测的准确性,以多6个小时以上的洪水损伤。但是,由于目标预测值和地面真相值之间的不可约性偏差,普通的弯曲局将在现实世界中预测的可预测范围超过3次触点的局限性。本文提出了一种用于时空降水代码对代码预测的雨代码方法。我们提出了一种新型的多雨特征,该功能代表了使用多帧融合以减少时间段的临时多雨过程。我们根据标准弯曲的雨码研究具有各种术语范围。从2006年到2019年,我们每年5月至10月在日本下雨期降水数据中申请了大坝地区。我们将雷达分析应用于中央宽区域的小时数据,区域为136 x 148 km2。最后,我们在几个预测范围内提供了雨代码大小和小时准确性之间的灵敏度研究。
Recently, flood damage has become a social problem owing to unexperienced weather conditions arising from climate change. An immediate response to heavy rain is important for the mitigation of economic losses and also for rapid recovery. Spatiotemporal precipitation forecasts may enhance the accuracy of dam inflow prediction, more than 6 hours forward for flood damage mitigation. However, the ordinary ConvLSTM has the limitation of predictable range more than 3-timesteps in real-world precipitation forecasting owing to the irreducible bias between target prediction and ground-truth value. This paper proposes a rain-code approach for spatiotemporal precipitation code-to-code forecasting. We propose a novel rainy feature that represents a temporal rainy process using multi-frame fusion for the timestep reduction. We perform rain-code studies with various term ranges based on the standard ConvLSTM. We applied to a dam region within the Japanese rainy term hourly precipitation data, under 2006 to 2019 approximately 127 thousands hours, every year from May to October. We apply the radar analysis hourly data on the central broader region with an area of 136 x 148 km2 . Finally we have provided sensitivity studies between the rain-code size and hourly accuracy within the several forecasting range.