论文标题
顺序算法和在大稀疏随机图上发现的独立集
Sequential Algorithms and Independent Sets Discovering on Large Sparse Random Graphs
论文作者
论文摘要
计算最大独立集的大小是固定图的NP硬问题。表征和设计有效的算法以估计随机图的独立数,这是众所周知的困难,并且仍然在很大程度上打开问题。在同伴论文中,我们表明,在大量的稀疏随机图上,低复杂度刺激实际上是渐近的最佳选择。在此结果的鼓励下,我们提出并研究了顺序探索算法的两个变体:静态和动态程度感知的探索。我们为两者提供了流体动力限制,这又使我们能够计算所得独立集的大小。尽管前者更简单地计算,但后者可用于任意近似度蛋白算法。两者都可以以分布式的方式实现。相应的流体动力限制构成了一种有效的方法,用于计算或绑定大型稀疏随机图的独立性数。然后,我们将如何使用我们的方法来估计基于802.11的大型无线网络的容量。我们最终考虑了进一步的指标,例如由此产生的配置的公平性,并展示如何实现公平和容量之间的意外权衡。
Computing the size of maximum independent sets is a NP-hard problem for fixed graphs. Characterizing and designing efficient algorithms to estimate this independence number for random graphs are notoriously difficult and still largely open issues. In a companion paper, we showed that a low complexity degree-greedy exploration is actually asymptotically optimal on a large class of sparse random graphs. Encouraged by this result, we present and study two variants of sequential exploration algorithms: static and dynamic degree-aware explorations. We derive hydrodynamic limits for both of them, which in turn allow us to compute the size of the resulting independent set. Whereas the former is simpler to compute, the latter may be used to arbitrarily approximate the degree-greedy algorithm. Both can be implemented in a distributed manner. The corresponding hydrodynamic limits constitute an efficient method to compute or bound the independence number for a large class of sparse random graphs. As an application, we then show how our method may be used to estimate the capacity of a large 802.11-based wireless network. We finally consider further indicators such as the fairness of the resulting configuration, and show how an unexpected trade-off between fairness and capacity can be achieved.