论文标题

在存在错误的数据的情况下,改善深层检测模型的概括

Improving Generalization of Deep Fault Detection Models in the Presence of Mislabeled Data

论文作者

Rombach, Katharina, Michau, Gabriel, Fink, Olga

论文摘要

标记的样本在现实世界数据集中无处不在,因为基于规则或专家标签通常基于错误的假设或有偏见的意见。神经网络可以“记住”这些标签错误的样本,因此表现出较差的概括。这在故障检测应用程序中提出了一个关键问题,其中不仅培训,而且验证数据集都容易包含标签的样本。在这项工作中,我们提出了一个新颖的两步框架,用于使用标签噪声进行稳健的训练。在第一步中,我们根据假设空间中的更新来识别离群值(包括标签的样本)。在第二步中,我们提出了不同的方法来根据已确定的异常值和数据增强技术修改训练数据。与以前的方法相反,我们旨在找到适用于现实世界应用的可靠解决方案,例如故障检测,没有干净的“无噪声”验证数据集。在标签噪声上限的大约假设下,我们显着提高了在大型标签噪声下训练的模型的概括能力。

Mislabeled samples are ubiquitous in real-world datasets as rule-based or expert labeling is usually based on incorrect assumptions or subject to biased opinions. Neural networks can "memorize" these mislabeled samples and, as a result, exhibit poor generalization. This poses a critical issue in fault detection applications, where not only the training but also the validation datasets are prone to contain mislabeled samples. In this work, we propose a novel two-step framework for robust training with label noise. In the first step, we identify outliers (including the mislabeled samples) based on the update in the hypothesis space. In the second step, we propose different approaches to modifying the training data based on the identified outliers and a data augmentation technique. Contrary to previous approaches, we aim at finding a robust solution that is suitable for real-world applications, such as fault detection, where no clean, "noise-free" validation dataset is available. Under an approximate assumption about the upper limit of the label noise, we significantly improve the generalization ability of the model trained under massive label noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源