论文标题

物流服务网络设计问题的元部分弯曲器分解

Meta Partial Benders Decomposition for the Logistics Service Network Design Problem

论文作者

Belieres, Simon, Hewitt, Mike, Jozefowiez, Nicolas, Semet, Frédéric

论文摘要

供应链运输运营通常是产品总成本的很大比例。可以通过解决物流服务网络设计问题(LSNDP)来优化此类操作,其中,物流服务提供商试图在多ECHELON分销网络中以具有成本效益的客户需求进行成本效益并满足客户需求。但是,许多工业环境产生了LSNDP的实例,这些实例太大,无法通过现成的优化求解器在合理的运行时间中解决。我们基于部分分解介绍了一种精确的弯曲器分解算法,该算法通过从聚合子问题数据中得出的信息来加强主问题。更具体地说,提出的元部分弯曲器分解智能将一个主问题智能切换到另一个问题,这两个要在主中包括的子问题信息以及汇总方式都包括在另一个问题上。通过一项广泛的计算研究,我们表明该方法的表现优于现有的基准方法,并且我们证明了在基于部分弯曲者分解方案过程中动态完善主问题的好处。

Supply chain transportation operations often account for a large proportion of product total cost to market. Such operations can be optimized by solving the Logistics Service Network Design Problem (LSNDP), wherein a logistics service provider seeks to cost-effectively source and fulfill customer demands of products within a multi-echelon distribution network. However, many industrial settings yield instances of the LSNDP that are too large to be solved in reasonable run-times by off-the-shelf optimization solvers. We introduce an exact Benders decomposition algorithm based on partial decompositions that strengthen the master problem with information derived from aggregating subproblem data. More specifically, the proposed Meta Partial Benders Decomposition intelligently switches from one master problem to another by changing both the amount of subproblem information to include in the master as well as how it is aggregated. Through an extensive computational study, we show that the approach outperforms existing benchmark methods and we demonstrate the benefits of dynamically refining the master problem in the course of a partial Benders decomposition-based scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源