论文标题

$(s,p)$ - 函数的谐波近似至少$ w^{s,1} $ - seminorm

$(s,p)$-harmonic approximation of functions of least $W^{s,1}$-seminorm

论文作者

Bucur, Claudia, Dipierro, Serena, Lombardini, Luca, Mazón, José M., Valdinoci, Enrico

论文摘要

我们将融合作为$ w^{s,p} $的最小化器的$ p \ searrow1 $ - 在(0,1)$中的$ s \ in(0,1)$和$ p \ in(1,\ infty)$ in(1,\ infty)$ for $ w^{s,1} $ - 在点式的含义和$γ$ converence中,这是对$ w^{s,1} $的能量。我们还解决了相应的欧拉格兰式方程的收敛性,以及最小化和弱解决方案之间的等效性。作为辅助结果,我们研究了有关$ w^{s,1} $ - 能量的一些规律性问题。

We investigate the convergence as $p\searrow1$ of the minimizers of the $W^{s,p}$-energy for $s\in(0,1)$ and $p\in(1,\infty)$ to those of the $W^{s,1}$-energy, both in the pointwise sense and by means of $Γ$-convergence. We also address the convergence of the corresponding Euler-Lagrange equations, and the equivalence between minimizers and weak solutions. As ancillary results, we study some regularity issues regarding minimizers of the $W^{s,1}$-energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源