论文标题

驱动器异常检测:数据集和对比度学习方法

Driver Anomaly Detection: A Dataset and Contrastive Learning Approach

论文作者

Köpüklü, Okan, Zheng, Jiapeng, Xu, Hang, Rigoll, Gerhard

论文摘要

分心的驾驶员更有可能无法预测危害,从而导致汽车事故。因此,检测驾驶员动作中的异常(即,与正常驾驶偏离的任何动作)都包含减少与驾驶员相关的事故的最重要性。但是,驾驶时驾驶员可以执行许多无界的异常动作,这导致了“开放式识别”问题。因此,我们没有意识到以前数据集提供商通常定义的一系列异常动作,而是在这项工作中提出了一种对比学习方法来学习指标,以区分正常的驾驶与异常驾驶。对于此任务,我们引入了一个新的基于视频的基准测试,即驱动程序异常检测(DAD)数据集,该数据集包含正常的驾驶视频以及其训练集中的一组异常动作。在DAD数据集的测试集中,有看不见的异常动作仍然需要从正常驾驶中淘汰。我们的方法在测试集上达到了0.9673 AUC,证明了对比度学习方法对异常检测任务的有效性。我们的数据集,代码和预培训模型已公开可用。

Distracted drivers are more likely to fail to anticipate hazards, which result in car accidents. Therefore, detecting anomalies in drivers' actions (i.e., any action deviating from normal driving) contains the utmost importance to reduce driver-related accidents. However, there are unbounded many anomalous actions that a driver can do while driving, which leads to an 'open set recognition' problem. Accordingly, instead of recognizing a set of anomalous actions that are commonly defined by previous dataset providers, in this work, we propose a contrastive learning approach to learn a metric to differentiate normal driving from anomalous driving. For this task, we introduce a new video-based benchmark, the Driver Anomaly Detection (DAD) dataset, which contains normal driving videos together with a set of anomalous actions in its training set. In the test set of the DAD dataset, there are unseen anomalous actions that still need to be winnowed out from normal driving. Our method reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the contrastive learning approach on the anomaly detection task. Our dataset, codes and pre-trained models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源