论文标题

S3K:通过多视图一致性进行机器人操作的自我监督语义关键

S3K: Self-Supervised Semantic Keypoints for Robotic Manipulation via Multi-View Consistency

论文作者

Vecerik, Mel, Regli, Jean-Baptiste, Sushkov, Oleg, Barker, David, Pevceviciute, Rugile, Rothörl, Thomas, Schuster, Christopher, Hadsell, Raia, Agapito, Lourdes, Scholz, Jonathan

论文摘要

机器人的行动能力从根本上受到其所感知的限制。许多现有的视觉表示学习方法都使用通用培训标准,例如图像重建,潜在空间中的平滑度或用于控制的有用性,或者使用带有特定功能(边界框,分段等)注释的大型数据集。但是,这两种方法通常都难以捕获特定对象上精确任务所需的细节,例如抓住并配合插头和插座。我们认为这些困难是由于这些模型缺乏几何结构而引起的。在这项工作中,我们主张语义3D关键点作为视觉表示,并提出了一个半监督的训练目标,该目标可以允许实例或类别级别的关键点进行训练至1-5毫米临床,并以最小的监督。此外,与基于本地纹理的方法不同,我们的模型将上下文信息集成了来自大区域的上下文信息,因此对于遮挡,噪声和缺乏可辨别的纹理而言是可靠的。我们证明,这种定位语义关键的能力可以使人类可理解的行为进行高水平的脚本。最后,我们证明这些关键点为定义强化学习的奖励功能提供了一种很好的方法,并且是培训代理的良好代表。

A robot's ability to act is fundamentally constrained by what it can perceive. Many existing approaches to visual representation learning utilize general-purpose training criteria, e.g. image reconstruction, smoothness in latent space, or usefulness for control, or else make use of large datasets annotated with specific features (bounding boxes, segmentations, etc.). However, both approaches often struggle to capture the fine-detail required for precision tasks on specific objects, e.g. grasping and mating a plug and socket. We argue that these difficulties arise from a lack of geometric structure in these models. In this work we advocate semantic 3D keypoints as a visual representation, and present a semi-supervised training objective that can allow instance or category-level keypoints to be trained to 1-5 millimeter-accuracy with minimal supervision. Furthermore, unlike local texture-based approaches, our model integrates contextual information from a large area and is therefore robust to occlusion, noise, and lack of discernible texture. We demonstrate that this ability to locate semantic keypoints enables high level scripting of human understandable behaviours. Finally we show that these keypoints provide a good way to define reward functions for reinforcement learning and are a good representation for training agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源