论文标题
生育等价和广义的Weyl代数
Birational Equivalences and Generalized Weyl Algebras
论文作者
论文摘要
在将它们作为广义的Weyl代数(GWAS)意识到之后,我们计算出各种量子组和podleś球的适当定位的Hochschild同源物。我们使用这样一个事实,即每个GWA在Biration上都等同于用1个毛刺的粉碎产品。我们还解决并解决了GWAS的异性等价问题以及异性平滑度问题。
We calculate suitably localized Hochschild homologies of various quantum groups and Podleś spheres after realizing them as generalized Weyl algebras (GWAs). We use the fact that every GWA is birationally equivalent to a smash product with a 1-torus. We also address and solve the birational equivalence problem, and the birational smoothness problem for GWAs.