论文标题
在未来的智能机器人中为人类行为建模情绪
Modeling emotion for human-like behavior in future intelligent robots
论文作者
论文摘要
在过去的几十年中,认知和情感神经科学的研究强调,情感对于人类的智力至关重要,实际上与认知密不可分。同时,对机器人和人造代理中的模拟和建模与情绪相关的过程的兴趣越来越大。在本意见论文中,我们的目标是提供情感建模中当前景观的快照,并展示神经科学如何帮助推进当前的最新水平。我们首先概述了三个研究领域的情感建模文献:情感计算,社会机器人技术和神经机构。简要地总结了关于自然情绪的当前知识状态,然后强调了人工情感中现有的建议如何与神经科学证据充分接触。我们结论一下,提供了一系列原则,以帮助指导未来的人造情感和智能机器研究。总体而言,我们认为,在机器人模型中,与情绪相关的过程的更强整合对于未来智能机器中类似人类行为的设计至关重要。这种整合不仅会有助于发展能够解决现实世界问题的自主社会机器的发展,而且有助于促进对人情绪的理解。
Over the past decades, research in cognitive and affective neuroscience has emphasized that emotion is crucial for human intelligence and in fact inseparable from cognition. Concurrently, there has been growing interest in simulating and modeling emotion-related processes in robots and artificial agents. In this opinion paper, our goal is to provide a snapshot of the present landscape in emotion modeling and to show how neuroscience can help advance the current state of the art. We start with an overview of the existing literature on emotion modeling in three areas of research: affective computing, social robotics, and neurorobotics. Briefly summarizing the current state of knowledge on natural emotion, we then highlight how existing proposals in artificial emotion do not make sufficient contact with neuroscientific evidence. We conclude by providing a set of principles to help guide future research in artificial emotion and intelligent machines more generally. Overall, we argue that a stronger integration of emotion-related processes in robot models is critical for the design of human-like behavior in future intelligent machines. Such integration not only will contribute to the development of autonomous social machines capable of tackling real-world problems but would contribute to advancing understanding of human emotion.