论文标题
gutierrez-sotomayor在奇异表面上流动
Gutierrez-Sotomayor Flows on Singular Surfaces
论文作者
论文摘要
在这项工作中,我们解决了带有GS奇点标记的Lyapunov图的可靠性,即常规,锥,惠特尼,双重交叉和三重交叉奇异性,作为连续的近距离封闭$ 2 $ manifold $ \ mathbf {m mathbf {m} $的连续流量。此外,相对于$ \ mathbf {m} $上流的GS奇点的类型计算了Euler特性。在局部,根据构成边界的分支歧管,提出了最小的GS奇点块的完整分类定理。
In this work we address the realizability of a Lyapunov graph labeled with GS singularities, namely regular, cone, Whitney, double crossing and triple crossing singularities, as continuous flow on a singular closed $2$-manifold $\mathbf{M}$. Furthermore, the Euler characteristic is computed with respect to the types of GS singularities of the flow on $\mathbf{M}$. Locally, a complete classification theorem for minimal isolating blocks of GS singularities is presented in terms of the branched one manifolds that make up the boundary.