论文标题

深度加强学习,以有效地测量量子设备

Deep Reinforcement Learning for Efficient Measurement of Quantum Devices

论文作者

Nguyen, V., Orbell, S. B., Lennon, D. T., Moon, H., Vigneau, F., Camenzind, L. C., Yu, L., Zumbühl, D. M., Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Ares, N.

论文摘要

深度强化学习是一种新兴的机器学习方法,可以教会计算机从其行为中学习并奖励类似于人类从经验中学习的方式。它在自动化决策过程中提供了许多优势,可以导航大型参数空间。本文提出了一种新的方法,可以根据深度强化学习有效地测量量子设备。我们专注于双量子点设备,证明了对特定的传输特征的全自动识别称为偏置三角形的特征。针对这些特征的测量值很难自动化,因为在参数空间的其他无特征区域中发现了偏差三角形。我们的算法在平均不到30分钟的时间内识别三角形的偏见,有时甚至只有1分钟。基于对决深Q-Networks的这种方法可以适应各种设备和目标运输功能。这是对量子设备的测量和操作中深方强化学习对决策的实用性的关键证明。

Deep reinforcement learning is an emerging machine learning approach which can teach a computer to learn from their actions and rewards similar to the way humans learn from experience. It offers many advantages in automating decision processes to navigate large parameter spaces. This paper proposes a novel approach to the efficient measurement of quantum devices based on deep reinforcement learning. We focus on double quantum dot devices, demonstrating the fully automatic identification of specific transport features called bias triangles. Measurements targeting these features are difficult to automate, since bias triangles are found in otherwise featureless regions of the parameter space. Our algorithm identifies bias triangles in a mean time of less than 30 minutes, and sometimes as little as 1 minute. This approach, based on dueling deep Q-networks, can be adapted to a broad range of devices and target transport features. This is a crucial demonstration of the utility of deep reinforcement learning for decision making in the measurement and operation of quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源