论文标题

从错误中学习:通过自我训练进行对话生成结合本体

Learning from Mistakes: Combining Ontologies via Self-Training for Dialogue Generation

论文作者

Reed, Lena, Harrison, Vrindavan, Oraby, Shereen, Hakkani-Tur, Dilek, Walker, Marilyn

论文摘要

针对任务对话的自然语言发生器(NLG)通常以意义表示(MR)为输入。他们是通过MR/Tusterance对的端到端训练的,MRS涵盖了一组特定的对话行为和域属性。创建此类数据集是劳动密集型且耗时的。因此,新领域本体论的对话系统将受益于使用数据预先存在的本体论。在这里,我们首次探索是否可以使用现有的餐厅域培训集来培训NLG为新的较大本体,其中每套基于不同的本体论。我们创建了一个新的,更大的组合本体论,然后训练NLG制作覆盖它的话语。例如,如果一个数据集具有对家庭友好和评级信息的属性,而另一个数据集则具有装饰和服务的属性,那么我们的目标是组合本体论的NLG,可以产生能够实现家庭友好,评级,装饰和服务价值的话语。基线神经序列到序列模型的初步实验表明,此任务令人惊讶地具有挑战性。然后,我们开发了一种新型的自我训练方法,该方法可以识别(错误)模型输出,自动构建校正的MR输入以形成一个新的(MR,话语)训练对,然后反复将这些新实例添加到训练数据中。然后,我们在新的测试集上测试结果模型。结果是一个自训练的模型,其性能比基线模型的绝对增长了75.4%。我们还报告了对最终模型的人类定性评估,表明它可以达到自然,语义连贯性和语法性

Natural language generators (NLGs) for task-oriented dialogue typically take a meaning representation (MR) as input. They are trained end-to-end with a corpus of MR/utterance pairs, where the MRs cover a specific set of dialogue acts and domain attributes. Creation of such datasets is labor-intensive and time-consuming. Therefore, dialogue systems for new domain ontologies would benefit from using data for pre-existing ontologies. Here we explore, for the first time, whether it is possible to train an NLG for a new larger ontology using existing training sets for the restaurant domain, where each set is based on a different ontology. We create a new, larger combined ontology, and then train an NLG to produce utterances covering it. For example, if one dataset has attributes for family-friendly and rating information, and the other has attributes for decor and service, our aim is an NLG for the combined ontology that can produce utterances that realize values for family-friendly, rating, decor and service. Initial experiments with a baseline neural sequence-to-sequence model show that this task is surprisingly challenging. We then develop a novel self-training method that identifies (errorful) model outputs, automatically constructs a corrected MR input to form a new (MR, utterance) training pair, and then repeatedly adds these new instances back into the training data. We then test the resulting model on a new test set. The result is a self-trained model whose performance is an absolute 75.4% improvement over the baseline model. We also report a human qualitative evaluation of the final model showing that it achieves high naturalness, semantic coherence and grammaticality

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源