论文标题
C臂非圆形轨道:几何校准,图像质量和避免金属伪影
C-Arm Non-Circular Orbits: Geometric Calibration, Image Quality, and Avoidance of Metal Artifacts
论文作者
论文摘要
金属伪像在图像引导的手术中对锥形束CT(CBCT)的经常挑战,掩盖了金属仪器的可视化和相邻的解剖结构。移动C臂系统的最新进展已实现了具有非圆形轨道的3D成像能力。我们通过前瞻性定义避免金属诱导的投影域中的非圆形轨道来延长先前提出的金属伪像(MAA)方法来减少金属伪像的影响。准确的几何校准是对于此类轨道准确的3D图像重建的重要挑战。我们研究了从任何非圆形轨道的圆形轨道库中基于插值的校准的性能。我们将方法应用于为MAA获得的非圆扫描,其中涉及:(i)仅使用端到端训练有素的神经网络,仅通过两种侦察仪视图对金属对象进行粗糙的3D定位; (ii)计算金属诱导的X射线光谱移位,以获取所有可能的视图; (iii)鉴定非圆形轨道,该轨道可最大程度地减少光谱变化的变化。基于插值的几何校准的非圆形轨道产生了合理准确的3D图像重建。端到端的神经网络即使在复杂的解剖场景中也只有两个侦察兵视图,可以准确地局部局部植入物,与单独训练的U-Nets的更常规级联相比,骰子系数提高了约42%。在带有椎弓根螺钉仪器的脊柱幻影中,通过MAA方法鉴定的非圆形轨道减少了CBCT重建中金属“ Blomming”伪像(明显的螺钉轴宽度)的幅度约70%。提出的成像和校准方法提出了一种实用手段,可以通过识别非圆形扫描方案来改善采样并减少投影数据中金属诱导的偏见,以提高移动C臂CBCT的图像质量。
Metal artifacts present a frequent challenge to cone-beam CT (CBCT) in image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy. Recent advances in mobile C-arm systems have enabled 3D imaging capacity with non-circular orbits. We extend a previously proposed metal artifacts avoidance (MAA) method to reduce the influence of metal artifacts by prospectively defining a non-circular orbit that avoids metal-induced biases in projection domain. Accurate geometric calibration is an important challenge to accurate 3D image reconstruction for such orbits. We investigate the performance of interpolation-based calibration from a library of circular orbits for any non-circular orbit. We apply the method to non-circular scans acquired for MAA, which involves: (i) coarse 3D localization of metal objects via only two scout views using an end-to-end trained neural network; (ii) calculation of the metal-induced x-ray spectral shift for all possible views; and (iii) identification of the non-circular orbit that minimizes the variations in spectral shift. Non-circular orbits with interpolation-based geometric calibration yielded reasonably accurate 3D image reconstruction. The end-to-end neural network accurately localized metal implants with just two scout views even in complex anatomical scenes, improving Dice coefficient by ~42% compared to a more conventional cascade of separately trained U-nets. In a spine phantom with pedicle screw instrumentation, non-circular orbits identified by the MAA method reduced the magnitude of metal "blomming" artifacts (apparent width of the screw shaft) in CBCT reconstructions by ~70%. The proposed imaging and calibration methods present a practical means to improve image quality in mobile C-arm CBCT by identifying non-circular scan protocols that improve sampling and reduce metal-induced biases in the projection data.