论文标题
从Rho Oph W photo-Dissociation-Region的厘米波长连续体的分辨光谱变化
Resolved spectral variations of the centimetre-wavelength continuum from the rho Oph W photo-dissociation-region
论文作者
论文摘要
CM波长无线电连续发射超过无用的免费,同步器和雷利 - 吉恩斯的灰尘发射(过量的微波发射,EME),通常称为“异常的微波发射”,在暴露于UV辐射的分子云区域中是明亮的。 EME与程度角度尺度上的IR灰尘发射相关。需要对良好的PDR进行解决的观察结果,以将CM-Continuum的光谱变化与物理条件和灰尘谷物种群的示踪剂进行比较。 EME在Rho Ophiuchi分子云(Rho Oph)的区域中特别明亮,该区域围绕着配合物中最早的HD 147889中最早的型星,其中峰信号源自所谓的Rho Oph-W-W Pdr的细丝。在这里,我们报告了解决细丝宽度的Rho Oph-W的ATCA观察结果。我们使用在天空平面上执行的非参数图像合成的变体恢复了延长的发射。多频17 GHz至39 GHz马赛克揭示了CM波长连续体的光谱变化。在〜30 ARCSEC的决议下,尽管这种相关性在较大尺度上崩溃了,但17-20 GHz强度紧随ICM Propto I(8 um)紧密遵循。但是,尽管33-39 GHz细丝与IRAC 8 MUM平行,但它被15-20 Arcsec偏移到紫外线源。这种频率的形态差异反映了光谱变化,我们从光谱上进行了量化为尖锐而陡峭的高频截止,这是用旋转的尘埃发射机制解释为最小晶粒尺寸A_CUTOFF〜6 +-1a,从而更深地增加了PDR。
Cm-wavelength radio continuum emission in excess of free-free, synchrotron and Rayleigh-Jeans dust emission (excess microwave emission, EME), and often called `anomalous microwave emission', is bright in molecular cloud regions exposed to UV radiation, i.e. in photo-dissociation regions (PDRs). The EME correlates with IR dust emission on degree angular scales. Resolved observations of well-studied PDRs are needed to compare the spectral variations of the cm-continuum with tracers of physical conditions and of the dust grain population. The EME is particularly bright in the regions of the rho Ophiuchi molecular cloud (rho Oph) that surround the earliest type star in the complex, HD 147889, where the peak signal stems from the filament known as the rho Oph-W PDR. Here we report on ATCA observations of rho Oph-W that resolve the width of the filament. We recover extended emission using a variant of non-parametric image synthesis performed in the sky plane. The multi-frequency 17 GHz to 39 GHz mosaics reveal spectral variations in the cm-wavelength continuum. At ~30 arcsec resolutions, the 17-20 GHz intensities follow tightly the mid-IR, Icm propto I(8 um), despite the breakdown of this correlation on larger scales. However, while the 33-39 GHz filament is parallel to IRAC 8 mum, it is offset by 15-20 arcsec towards the UV source. Such morphological differences in frequency reflect spectral variations, which we quantify spectroscopically as a sharp and steepening high-frequency cutoff, interpreted in terms of the spinning dust emission mechanism as a minimum grain size a_cutoff ~ 6 +- 1A that increases deeper into the PDR.