论文标题

讽刺:不成年的漫画一代,有多个夸张

CariMe: Unpaired Caricature Generation with Multiple Exaggerations

论文作者

Gu, Zheng, Dong, Chuanqi, Huo, Jing, Li, Wenbin, Gao, Yang

论文摘要

漫画一代旨在将真实的照片转化为具有艺术风格和夸张的漫画,同时保持主题的身份。与通用图像到图像翻译不同,由于存在各种空间变形,因此自动绘制漫画是一项更具挑战性的任务。先前的讽刺生成方法沉迷于从给定照片中预测明确的图像翘曲,同时忽略漫画中夸张的内在表示和分布。这限制了他们在各种夸张产生中的能力。在本文中,我们将漫画生成问题从实例级别的翘曲预测到分布级变形建模。基于这个假设,我们提出了第一次探索未配对的漫画产生,并具有多种夸张(讽刺)。从技术上讲,我们提出了一个多夸张的Warper网络,以学习从照片到面部夸张的分布级映射。这使得从一个输入照片中随机采样的经纱代码产生多样化和合理的夸张。为了更好地代表面部夸张并产生细粒度的翘曲,还提出了一种基于变形场的翘曲方法,这有助于我们比其他基于点的翘曲方法捕获更详细的夸张。实验和两项感知研究证明了我们方法与其他最先进方法相比的优越性,显示了我们在漫画产生方面的改善。

Caricature generation aims to translate real photos into caricatures with artistic styles and shape exaggerations while maintaining the identity of the subject. Different from the generic image-to-image translation, drawing a caricature automatically is a more challenging task due to the existence of various spacial deformations. Previous caricature generation methods are obsessed with predicting definite image warping from a given photo while ignoring the intrinsic representation and distribution for exaggerations in caricatures. This limits their ability on diverse exaggeration generation. In this paper, we generalize the caricature generation problem from instance-level warping prediction to distribution-level deformation modeling. Based on this assumption, we present the first exploration for unpaired CARIcature generation with Multiple Exaggerations (CariMe). Technically, we propose a Multi-exaggeration Warper network to learn the distribution-level mapping from photo to facial exaggerations. This makes it possible to generate diverse and reasonable exaggerations from randomly sampled warp codes given one input photo. To better represent the facial exaggeration and produce fine-grained warping, a deformation-field-based warping method is also proposed, which helps us to capture more detailed exaggerations than other point-based warping methods. Experiments and two perceptual studies prove the superiority of our method comparing with other state-of-the-art methods, showing the improvement of our work on caricature generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源