论文标题

由$ g $ -Brownian Motion驱动的前向后随机微分方程的有效数值方法

An Efficient Numerical Method for Forward-Backward Stochastic Differential Equations Driven by $G$-Brownian motion

论文作者

Hu, Mingshang, Jiang, Lianzi

论文摘要

在本文中,我们研究了通过$ g $ -Brownian运动($ G $ -FBSDE)驱动的前向后随机微分方程的数值方法,该方程对应于完全非线性的部分偏微分方程(PDES)。首先,我们提供了近似条件的$ g $ - 预测,并获得可行的方法来计算$ g $ -Brownian Motion的分布。在此基础上,提出了一些针对$ g $ -FBSDE的有效数值方案。我们严格地分析了提出的方案的错误,并证明了收敛结果。最后,进行了一些数值实验,以证明我们方法的准确性。

In this paper, we study the numerical method for solving forward-backward stochastic differential equations driven by $G$-Brownian motion ($G$-FBSDEs) which correspond to fully nonlinear partial differential equations (PDEs). First, we give an approximate conditional $G$-expectation and obtain feasible methods to calculate the distribution of $G$-Brownian motion. On this basis, some efficient numerical schemes for $G$-FBSDEs are then proposed. We rigorously analyze errors of the proposed schemes and prove the convergence results. Finally, several numerical experiments are given to demonstrate the accuracy of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源