论文标题

编织量子门的本地不变 - 关联的链接多项式和纠缠力量

Local invariants of braiding quantum gates -- associated link polynomials and entangling power

论文作者

Padmanabhan, Pramod, Sugino, Fumihiko, Trancanelli, Diego

论文摘要

对于通用$ n $ qubit的系统,在$ sl(2,\ mathbb {c})的动作下的本地不变式^{\ otimes n} $表征了纠缠的非本地属性。通常,这种特性并不明显且难以构建。在这里,我们考虑了某些两Q Qubit的Yang-Baxter运算符,我们将其配置为“ X型”,并证明其特征值完全确定了系统的非本地性能。此外,我们将Turaev程序应用于这些操作员并获得相关的链接/结多项式。我们还计算了他们的纠缠力量,并将其与通用的两分Quibit Operator的功率进行比较。

For a generic $n$-qubit system, local invariants under the action of $SL(2,\mathbb{C})^{\otimes n}$ characterize non-local properties of entanglement. In general, such properties are not immediately apparent and hard to construct. Here we consider certain two-qubit Yang-Baxter operators, which we dub of the `X-type', and show that their eigenvalues completely determine the non-local properties of the system. Moreover, we apply the Turaev procedure to these operators and obtain their associated link/knot polynomials. We also compute their entangling power and compare it with that of a generic two-qubit operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源