论文标题
来自眼睛眼睛图像的糖尿病性视网膜病等级的成本敏感正则化
Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images
论文作者
论文摘要
评估生物医学图像中疾病严重程度的程度是类似于标准分类的任务,但受标签空间中的基础结构的约束。这种结构反映了不同疾病等级之间的单调关系。在本文中,我们提出了一种直接的方法,以根据众所周知的成本敏感分类概念来预测眼底图像的糖尿病性视网膜病(DR)严重程度的任务。我们以额外的术语来扩展标准分类损失,该损失是正规机,当它们与特定图像相关的真实等级时,对预测等级施加了更大的惩罚。此外,我们展示了如何使我们的方法适应与DR分级相关的每个子问题中标签噪声的建模,这是一种我们称为原子子任务建模的方法。这产生了可以隐含考虑DR等级注释中存在的固有噪声的模型。我们对几个公共数据集的实验分析表明,当使用此简单策略对标准的卷积神经网络进行培训时,可以以微不足道的计算成本来提高3-5%的二次加权Kappa分数。复制我们结果的代码将在https://github.com/agaldran/cost_sensive_loss_classification上发布。
Assessing the degree of disease severity in biomedical images is a task similar to standard classification but constrained by an underlying structure in the label space. Such a structure reflects the monotonic relationship between different disease grades. In this paper, we propose a straightforward approach to enforce this constraint for the task of predicting Diabetic Retinopathy (DR) severity from eye fundus images based on the well-known notion of Cost-Sensitive classification. We expand standard classification losses with an extra term that acts as a regularizer, imposing greater penalties on predicted grades when they are farther away from the true grade associated to a particular image. Furthermore, we show how to adapt our method to the modelling of label noise in each of the sub-problems associated to DR grading, an approach we refer to as Atomic Sub-Task modeling. This yields models that can implicitly take into account the inherent noise present in DR grade annotations. Our experimental analysis on several public datasets reveals that, when a standard Convolutional Neural Network is trained using this simple strategy, improvements of 3-5\% of quadratic-weighted kappa scores can be achieved at a negligible computational cost. Code to reproduce our results is released at https://github.com/agaldran/cost_sensitive_loss_classification.