论文标题
关于某些随机积分映射的组成的评论
Remarks on compositions of some random integral mappings
论文作者
论文摘要
随机的积分映射(某些类型的莱维过程功能)是所有无限分开措施的半群的卷积子群之间的连续同态。这些随机积分(映射)的组成始终可以表示为另一个单个随机积分映射。这个事实通过一些新老例子说明了这一事实。
The random integral mappings (some type of functionals of Lévy processes) are continuous homomorphisms between convolution subsemigroups of the semigroup of all infinitely divisible measures. Compositions of those random integrals (mappings) can be always expressed as another single random integral mapping. That fact is illustrated by some old and new examples.