论文标题
sno/$β$ -GA2O3垂直$ pn $杂结二极管
SnO/$β$-Ga2O3 vertical $pn$ heterojunction diodes
论文作者
论文摘要
垂直$ pn $异质结二极管由血浆辅助的分子束外部X型固定,该分子束的外观不可思议的$ P $ P $ P $ -Type SNO层,孔浓度从$ p = 10^{18} $到$ 10^{19} {19} $ cm $ cm $ cm $^{-3} $^{-3} $β$ -GA $ _ {2} $ o $ _ {3} $(201)基材,电子浓度为$ n = 2.0 \ times10^{17} $ cm $^{ - 3} $。 SNO层由(001)面向的晶粒组成,而无需与底物的面内暴露关系。在随后的接触处理和MESA蚀刻(从SNO层中大大降低了反向电流的扩散以及相关的高泄漏)通过电流 - 电压和电容 - 电压测量进行了电气表征。结果揭示了I型带对齐和通过热发射偏置中的连接运输。 $ 2 \ times10^{8} $在$ \ pm1 $ v的纠正,理想因素为1.16,差异特定的特异性电阻为390万$ω\ thinspace $ cm $ cm $^{2} $,内置电压为0.96V。 $ pn $接口隔离可以防止高电导的GA $ _ {2} $ o $ $ $ _ {3} $ substrate(表电阻$ r_ {s} \ of3 \thinspaceΩ$)在van-der-pauw hall laym y of the n sno lase y y of top($ r _} $ r _} $ r _ {s { $ p \ oft2.5 \ times10^{18} $ cm $^{ - 3} $,Hall Mobility $ \ of1 $ cm $^{2} $/vs)。测得的二极管的最大反向分解电压为66V,对应于GA $ _ {2} $ o $ $ $ _ {3} $ - 耗尽区域中的峰值分解场2.2mv/cm。可以通过在$β$ -GA $ _ {2} $ o $ $ _ {3} $中降低供体的浓度来实现高压设备所需的较高的故障电压,以增加耗竭宽度,并改善接触几何以减少现场群体。
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $β$-Ga$_{2}$O$_{3}$(-201) substrates with an electron concentration of $n=2.0\times10^{17}$cm$^{-3}$. The SnO layers consist of (001)-oriented grains without in-plane expitaxial relation to the substrate. After subsequent contact processing and mesa etching (which drastically reduced the reverse current spreading in the SnO layer and associated high leakage) electrical characterization by current-voltage and capacitance-voltage measurement was performed. The results reveal a type-I band alignment and junction transport by thermionic emission in forward bias. A rectification of $2\times10^{8}$ at $\pm1$V, an ideality factor of 1.16, differential specific on-resistance of 3.9m$Ω\thinspace$cm$^{2}$, and built-in voltage of 0.96V were determined. The $pn$-junction isolation prevented parallel conduction in the highly-conductive Ga$_{2}$O$_{3}$ substrate (sheet resistance $R_{S}\approx3\thinspaceΩ$) during van-der-Pauw Hall measurements of the SnO layer on top ($R_{S}\approx150$k$Ω$, $p\approx2.5\times10^{18}$cm$^{-3}$, Hall mobility $\approx1$cm$^{2}$/Vs). The measured maximum reverse breakdown voltage of the diodes was 66V, corresponding to a peak breakdown field 2.2MV/cm in the Ga$_{2}$O$_{3}$-depletion region. Higher breakdown voltages that are required in high-voltage devices could be achieved by reducing the donor concentration in the $β$-Ga$_{2}$O$_{3}$ to increase the depletion width as well as improving the contact geometry to reduce field crowding.