论文标题

用于在线多重背包问题的竞争算法,并应用电动汽车充电

Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging

论文作者

Sun, Bo, Zeynali, Ali, Li, Tongxin, Hajiesmaili, Mohammad, Wierman, Adam, Tsang, Danny H. K.

论文摘要

我们介绍并研究了分数在线背包问题的一般版本,其中有多种背包,可以分配哪个项目的项目的异构约束,以及在分配项目以进行背包的情况下限制了限制限制的约束。这个问题概述了背包问题的变化以及以前已分别处理过的单向交易问题的变化,并在电动汽车(EV)充电的实时控制方面进行了应用。我们介绍了一种新的算法,该算法在一般问题的最佳竞争比率之一中达到了竞争比率之一,并且在特殊情况下,在Knapsack和单向交易文献中,最著名的竞争比率匹配或改善了。此外,我们的分析提供了一种基于实例依赖性的原始偶对偶的分析,为在线算法设计提供了一种新颖的方法,该分析将最坏情况实例的识别与算法的设计联系起来。最后,我们通过基于痕量的EV充电实验说明了所提出的算法。

We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源