论文标题
多项式朱莉娅套件不变子脑的切口
Cutpoints of invariant subcontinua of polynomial Julia sets
论文作者
论文摘要
我们证明了飞机的分支覆盖地图$ f $的固定点结果。对于复杂的多项式$ p $,朱莉娅设置$ j_p $,这意味着$ j_p $的某些不变subcontinua的定期切口也是$ j_p $的切割点。我们推断出,根据$ j_p $的不变subcontinua $ q $ q $的某些假设,以定期的驱动/抛物线/抛物线point $ x \ in q $ in q $ liemann射线到$ q $ landing是对riemann ray相对于$ q $ $ q $的同位素的同位素。
We prove fixed point results for branched covering maps $f$ of the plane. For complex polynomials $P$ with Julia set $J_P$ these imply that periodic cutpoints of some invariant subcontinua of $J_P$ are also cutpoints of $J_P$. We deduce that, under certain assumptions on invariant subcontinua $Q$ of $J_P$, every Riemann ray to $Q$ landing at a periodic repelling/parabolic point $x\in Q$ is isotopic to a Riemann ray to $J_P$ relative to $Q$.