论文标题

通过多尺度建模在长期太空飞行期间的心血管调节

Cardiovascular deconditioning during long-term spaceflight through multiscale modeling

论文作者

Gallo, Caterina, Ridolfi, Luca, Scarsoglio, Stefania

论文摘要

数百年来,人类的太空飞行一直令人着迷,代表了探索未知,挑战新边界,进步技术并进一步推动科学界限的无形需求。重要性的关键领域是心血管衰减,即血液动力学变化的收集 - 从血液体积的转移和减少到改变心脏功能 - 是由微重力持续存在引起的。从生理角度来看,对0G调整点的彻底掌握至关重要,并且是宇航员在长太空飞行上的安全性和身体能力的基础上。然而,迄今为止,心血管衰减的血液动力学细节不完整,不一致且测量不佳。因此,计算方法可能非常有价值。我们提出了经过验证的1D-0D多尺度模型,该模型与1G仰卧参考条件相比,研究了对长期0G太空飞行的心血管响应。心脏工作,氧气消耗和收缩率指数以及中心均值和脉搏压力减小,从而增加了心脏衰减的情况。发现航天旅行者的运动耐受性与具有久坐生活方式的未经训练的人相媲美。在毛细血管含量水平上,观察到显着的波形改变,可以改变细胞水平的常规灌注和平均营养供应。本研究表明,应特别注意未来的长太空飞行,要求在恢复部分重力时迅速的身体能力(例如,月亮/火星着陆)。由于太空飞行的解剖学具有类似于加速衰老理解微重力的衰老机制的特征,也与对地球上衰老生理学的理解有关。

Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology and push scientific boundaries further. A key area of importance is cardiovascular deconditioning, that is, the collection of hemodynamic changes - from blood volume shift and reduction to altered cardiac function - induced by sustained presence in microgravity. A thorough grasp of the 0G adjustment point per se is important from a physiological viewpoint and fundamental for astronauts' safety and physical capability on long spaceflights. However, hemodynamic details of cardiovascular deconditioning are incomplete, inconsistent and poorly measured to date; thus a computational approach can be quite valuable. We present a validated 1D-0D multiscale model to study the cardiovascular response to long-term 0G spaceflight in comparison to the 1G supine reference condition. Cardiac work, oxygen consumption and contractility indexes, as well as central mean and pulse pressures were reduced, augmenting the cardiac deconditioning scenario. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary-venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level. The present study suggests special attention should be paid to future long spaceflights which demand prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing). Since spaceflight deconditioning has features similar to accelerated aging understanding deconditioning mechanisms in microgravity are also relevant to the understanding of aging physiology on Earth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源