论文标题

Lipschitz在有限的斜率条件下的一类积分功能的最小化器

Lipschitz minimizers for a class of integral functionals under the bounded slope condition

论文作者

Don, Sebastiano, Lussardi, Luca, Pinamonti, Andrea, Treu, Giulia

论文摘要

我们考虑功能$ \int_Ω我们证明,在边界基准的有界坡度条件下,在$ g $上的适当条件下,存在一个独特的最小化器,它也是Lipschitz的连续。

We consider the functional $\int_Ωg(\nabla u+\textbf X^\ast)d\mathscr L^{2n}$ where $g$ is convex and $\textbf X^\ast(x,y)=2(-y,x)$ and we study the minimizers in $BV(Ω)$ of the associated Dirichlet problem. We prove that, under the bounded slope condition on the boundary datum, and suitable conditions on $g$, there exists a unique minimizer which is also Lipschitz continuous.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源