论文标题
基于序数分区网络的多元时间序列的因果耦合推断
Causal coupling inference from multivariate time series based on ordinal partition transition networks
论文作者
论文摘要
在许多科学领域,例如流行病学,气候学,生态学,基因组学,经济学和神经科学等许多科学领域,识别因果关系是一个具有挑战性但至关重要的问题。最近的研究表明,顺序分区过渡网络(OPTN)允许推断两个动态系统之间的耦合方向。在这项工作中,我们将此概念推广到对多个动态系统之间相互作用的研究,并提出了一种检测多元观察数据中因果关系的新方法。通过将该方法应用于耦合线性随机过程的数值模拟以及相互作用的非线性动力学系统(耦合Lorenz系统和神经质量模型网络)的两个示例,我们可以证明我们的方法可以可靠地识别相互作用的方向和相关的耦合延迟。最后,我们研究了来自啮齿动物脑切片的现实世界观测微电极阵列电生理学数据,以识别癫痫样活动的因果偶联结构。来自模拟和现实世界数据的结果表明,OPTN可以提供一种互补和强大的方法来从多元观察数据中推断因果效应网络。
Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partition transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.