论文标题
RISA-NET:旋转不变的结构感知网络,用于细粒3D形状检索
RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D Shape Retrieval
论文作者
论文摘要
细颗粒的3D形状检索旨在检索与存储库中的查询形状相似的3D形状,其模型属于同一类,这要求形状描述符能够代表详细的几何信息,以区分具有全球相似结构的形状。此外,可以将3D对象放置在现实世界中的任意位置和方向上,这进一步要求形状描述符对刚性转换具有鲁棒性。现有3D形状检索系统中使用的形状描述无法符合上述两个标准。在本文中,我们介绍了一种新颖的深度体系结构RISA-NET,它学习了能够编码细颗粒几何信息和结构信息的旋转不变的3D形状描述符,从而实现了精细的3D 3D对象检索任务的准确结果。 RISA-NET提取一组紧凑而详细的几何特征,部分和歧视性估计每个语义部分对形状表示的贡献。此外,当生成3D形状的最终紧凑型潜在特征以进行细粒度检索时,我们的方法能够学习所有部分的几何和结构信息的重要性。我们还构建和发布了一个新的3D形状数据集,该数据集带有子级标签,以验证细粒度3D形状检索方法的性能。定性和定量实验表明,我们的RISA-NET在细颗粒对象检索任务上优于最先进的方法,这表明了其在几何细节提取中的能力。代码和数据集可在以下网址获得:https://github.com/iglict/risanet。
Fine-grained 3D shape retrieval aims to retrieve 3D shapes similar to a query shape in a repository with models belonging to the same class, which requires shape descriptors to be capable of representing detailed geometric information to discriminate shapes with globally similar structures. Moreover, 3D objects can be placed with arbitrary position and orientation in real-world applications, which further requires shape descriptors to be robust to rigid transformations. The shape descriptions used in existing 3D shape retrieval systems fail to meet the above two criteria. In this paper, we introduce a novel deep architecture, RISA-Net, which learns rotation invariant 3D shape descriptors that are capable of encoding fine-grained geometric information and structural information, and thus achieve accurate results on the task of fine-grained 3D object retrieval. RISA-Net extracts a set of compact and detailed geometric features part-wisely and discriminatively estimates the contribution of each semantic part to shape representation. Furthermore, our method is able to learn the importance of geometric and structural information of all the parts when generating the final compact latent feature of a 3D shape for fine-grained retrieval. We also build and publish a new 3D shape dataset with sub-class labels for validating the performance of fine-grained 3D shape retrieval methods. Qualitative and quantitative experiments show that our RISA-Net outperforms state-of-the-art methods on the fine-grained object retrieval task, demonstrating its capability in geometric detail extraction. The code and dataset are available at: https://github.com/IGLICT/RisaNET.