论文标题
在联邦学习中进行双向保护
Towards Bidirectional Protection in Federated Learning
论文作者
论文摘要
提高联合学习(FL)安全性的事先努力分为两类。在频谱的一端,一些工作使用安全的聚合技术来隐藏单个客户端的更新,并且仅向恶意服务器揭示了汇总的全局更新,该更新致力于从其更新中推断客户的隐私。在频谱的另一端,某些工作使用拜占庭式FL协议来抑制恶意客户更新的影响。我们提出了联合学习协议F2ED学习协议,该协议首次提供双向防御,以同时对抗恶意的中央式服务器和拜占庭恶意客户。为了防止拜占庭恶意客户,F2ED学习者通过采用和校准良好的稳健平均估计器滤波器2来提供无维度估计错误。 F2ED学习还利用安全的聚合来保护客户免受恶意服务器的影响。 F2ED学习的一个关键挑战是解决过滤器和安全聚合方案之间的不相容性。具体而言,FelterL2必须检查客户端的各个更新,而安全的聚合将这些更新隐藏在恶意服务器中。为此,我们提出了一种实用且高效的解决方案,将客户分成碎片,在此将每个碎片的更新牢固地汇总,并在来自不同碎片的更新上启动FilterL2。评估表明,在五次流行攻击下,F2ED学习始终达到最佳或接近最佳的性能,并优于五个安全的FL协议。
Prior efforts in enhancing federated learning (FL) security fall into two categories. At one end of the spectrum, some work uses secure aggregation techniques to hide the individual client's updates and only reveal the aggregated global update to a malicious server that strives to infer the clients' privacy from their updates. At the other end of the spectrum, some work uses Byzantine-robust FL protocols to suppress the influence of malicious clients' updates. We present a federated learning protocol F2ED-LEARNING, which, for the first time, offers bidirectional defense to simultaneously combat against the malicious centralized server and Byzantine malicious clients. To defend against Byzantine malicious clients, F2ED-LEARNING provides dimension-free estimation error by employing and calibrating a well-studied robust mean estimator FilterL2. F2ED-LEARNING also leverages secure aggregation to protect clients from a malicious server. One key challenge of F2ED-LEARNING is to address the incompatibility between FilterL2 and secure aggregation schemes. Concretely, FilterL2 has to check the individual updates from clients whereas secure aggregation hides those updates from the malicious server. To this end, we propose a practical and highly effective solution to split the clients into shards, where F2ED-LEARNING securely aggregates each shard's update and launches FilterL2 on updates from different shards. The evaluation shows that F2ED-LEARNING consistently achieves optimal or close-to-optimal performance and outperforms five secure FL protocols under five popular attacks.