论文标题

采矿和建模运动数据的复杂领导力遵循动态

Mining and modeling complex leadership-followership dynamics of movement data

论文作者

Amornbunchornvej, Chainarong, Berger-Wolf, Tanya Y.

论文摘要

领导力和追随者是包括人类在内的社会动物中集体决策和组织的重要组成部分。在本质上,领导者和追随者的关系是动态的,并且随着上下文或时间因素而变化。了解领导力和追随者的动态,例如领导者和追随者如何改变,出现或融合,使科学家可以更深入地了解团体决策和一般的集体行为。但是,只有个人活动的数据,推断领导者和追随者的动态是挑战。在本文中,我们专注于采矿和建模频繁的领导和跟随模式。我们正式化了新的计算问题,并提出了一个框架,该框架可用于解决有关小组运动的几个问题。我们使用领导力推理框架MFLICA来推断运动数据集的时间序列及其派系的时间序列,然后提出一种挖掘和模拟领导力和追随者动态频繁模式的方法。我们通过使用几个模拟数据集以及狒狒运动的现实数据集来评估我们的框架性能,以演示我们框架的应用。这些是新颖的计算问题,据我们所知,没有现有的可比方法来解决这些问题。因此,我们修改并扩展了现有的领导力推理框架,以提供非平凡的基准进行比较。我们的框架在所有数据集中的表现都比此基线更好。我们的框架为科学家提供了有关运动数据中领导力动态的可检验的科学假设的机会。

Leadership and followership are essential parts of collective decision and organization in social animals, including humans. In nature, relationships of leaders and followers are dynamic and vary with context or temporal factors. Understanding dynamics of leadership and followership, such as how leaders and followers change, emerge, or converge, allows scientists to gain more insight into group decision-making and collective behavior in general. However, given only data of individual activities, it is challenging to infer the dynamics of leaders and followers. In this paper, we focus on mining and modeling frequent patterns of leading and following. We formalize new computational problems and propose a framework that can be used to address several questions regarding group movement. We use the leadership inference framework, mFLICA, to infer the time series of leaders and their factions from movement datasets and then propose an approach to mine and model frequent patterns of both leadership and followership dynamics. We evaluate our framework performance by using several simulated datasets, as well as the real-world dataset of baboon movement to demonstrate the applications of our framework. These are novel computational problems and, to the best of our knowledge, there are no existing comparable methods to address them. Thus, we modify and extend an existing leadership inference framework to provide a non-trivial baseline for comparison. Our framework performs better than this baseline in all datasets. Our framework opens the opportunities for scientists to generate testable scientific hypotheses about the dynamics of leadership in movement data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源