论文标题

使用基于情感的自动性产生虚拟试剂的情感步态

Generating Emotive Gaits for Virtual Agents Using Affect-Based Autoregression

论文作者

Bhattacharya, Uttaran, Rewkowski, Nicholas, Guhan, Pooja, Williams, Niall L., Mittal, Trisha, Bera, Aniket, Manocha, Dinesh

论文摘要

我们提出了一个新颖的自动性网络,以产生虚拟代理,通过步行方式或步态传达各种情绪。鉴于步态的3D姿势序列,我们的网络提取了步态相关的运动特征和情感特征。我们使用这些功能来综合随后的步态,以便虚拟代理可以表达和过渡为快乐,悲伤,愤怒和中立的组合。我们将多个正规化纳入了网络培训中,以同时在虚拟代理上执行合理的运动和明显的情绪。我们还使用Microsoft Hololens将方法与AR环境集成在一起,并可以以互动速度产生情感步态以增加社交形象。我们评估了人类观察者如何在基于网络的研究中对虚拟药物的生成步态的自然和情感感知。我们的结果表明,大约有89%的用户发现步态的自然性在五点李克特量表上令人满意,而他们从虚拟代理中感知到的情绪在统计学上与虚拟药物的预期情绪相似。我们还使用网络来增强具有情感步态的现有步态数据集,并将发布此增强数据集,以供未来的情感预测和情感步态综合研究。我们的项目网站可在https://gamma.umd.edu/gen_emotive_gaits/上找到。

We present a novel autoregression network to generate virtual agents that convey various emotions through their walking styles or gaits. Given the 3D pose sequences of a gait, our network extracts pertinent movement features and affective features from the gait. We use these features to synthesize subsequent gaits such that the virtual agents can express and transition between emotions represented as combinations of happy, sad, angry, and neutral. We incorporate multiple regularizations in the training of our network to simultaneously enforce plausible movements and noticeable emotions on the virtual agents. We also integrate our approach with an AR environment using a Microsoft HoloLens and can generate emotive gaits at interactive rates to increase the social presence. We evaluate how human observers perceive both the naturalness and the emotions from the generated gaits of the virtual agents in a web-based study. Our results indicate around 89% of the users found the naturalness of the gaits satisfactory on a five-point Likert scale, and the emotions they perceived from the virtual agents are statistically similar to the intended emotions of the virtual agents. We also use our network to augment existing gait datasets with emotive gaits and will release this augmented dataset for future research in emotion prediction and emotive gait synthesis. Our project website is available at https://gamma.umd.edu/gen_emotive_gaits/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源