论文标题
平面案例中各向异性最大曲率的估计值
An estimate for the anisotropic maximum curvature in the planar case
论文作者
论文摘要
我们修复了Finsler Norm $ f $,并使用各向异性曲率流,我们证明了平稳的Jordan曲线的各向异性最大曲率$ k^f _ {\ max} $,使$ k^f _ {\ max}(\ max}(γ)(γ)(γ) $κ$与各向异性$ f $相关的统一形状的面积。
We fix a Finsler norm $F$ and, using the anisotropic curvature flow, we prove that the anisotropic maximum curvature $k^F_{\max}$ of a smooth Jordan curve is such that $ k^F_{\max}(γ)\geq \sqrt{κ/A}$ , where $A$ is the area enclosed by $γ$ and $κ$ the area of the unitary Wulff shape associated to the anisotropy $F$.