论文标题

是否需要两个二元算子来获得平行组成的有限公理化?

Are Two Binary Operators Necessary to Obtain a Finite Axiomatisation of Parallel Composition?

论文作者

Aceto, Luca, Castiglioni, Valentina, Fokkink, Wan, Igolfsdottir, Anna, Luttik, Bas

论文摘要

Bergstra和Klop表明,与二进制的左侧和通信合并操作员相比,双性异性在ACP/CC上具有有限的方程式化。莫勒(Moller)证明,辅助操作员对于获得CCS上的双含量有限的公理化是必要的,而Aceto等人则是必要的。表明当轩尼诗的合并被添加到该语言中时,这仍然是正确的。这些结果提出了一个问题,即是否有一个辅助二元算子,其在CCS中的增加会导致双偏的有限的双疗法化。我们在简化的CC的递归,复制和无限制片段的简化设置中回答了这个问题。我们提出了与辅助操作员的操作语义有关的三个自然假设及其与平行组成的关系,并证明了在简化的设置中促进了双二元组化的辅助二进制算子,无法满足所有三个假设。

Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS extended with the binary left and communication merge operators. Moller proved that auxiliary operators are necessary to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al. showed that this remains true when Hennessy's merge is added to that language. These results raise the question of whether there is one auxiliary binary operator whose addition to CCS leads to a finite axiomatisation of bisimilarity. We contribute to answering this question in the simplified setting of the recursion-, relabelling-, and restriction-free fragment of CCS. We formulate three natural assumptions pertaining to the operational semantics of auxiliary operators and their relationship to parallel composition, and prove that an auxiliary binary operator facilitating a finite axiomatisation of bisimilarity in the simplified setting cannot satisfy all three assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源