论文标题

关于湍流灰尘生长的晶粒大小分布

On the grain-size distribution of turbulent dust growth

论文作者

Mattsson, Lars

论文摘要

最近已经显示,星际介质(ISM)中的湍流可以通过分子的积聚显着加速粉尘晶粒的生长,但是湍流的气体密度分布在塑造晶粒大小分布中也起着至关重要的作用。如果生长物种(分子)在气体中充分混合,则生长速度,即平均晶粒半径的变化速率与局部气体密度成正比。结果,由于ISM的气体密度分布显示出很大的差异,因此晶粒生长在不同位置的速率截然不同。在这里,表明晶粒大小分布(GSD)迅速成为气体密度分布的反映,而与初始GSD的形状无关。通过将ISM湍流建模为Markov过程,在Ornstein-uhlenbeck过程的特殊情况下,获得了该结果,从而导致对数正态气体密度分布,这与等温可压缩湍流的数值模拟一致。这会产生大约对数正常的GSD;因此,几项研究表明,冷ISM云中的灰尘颗粒的尺寸可能不会遵循以索引-3.5的常见的幂律GSD,而是通过多项研究证实了对数 - 纳米中性GSD的使用,这是一项研究。还可以得出结论,在分子云的高声音湍流中获得的非常广泛的气体密度必须允许形成一条非常大的谷物的尾巴,达到了几微米的半径。

It has recently been shown that turbulence in the interstellar medium (ISM) can significantly accelerate the growth of dust grains by accretion of molecules, but the turbulent gas-density distribution also plays a crucial role in shaping the grain-size distribution. The growth velocity, i.e., the rate of change of the mean grain radius, is proportional to the local gas density if the growth species (molecules) are well-mixed in the gas. As a consequence, grain growth happens at vastly different rates in different locations, since the gas-density distribution of the ISM shows a considerable variance. Here, it is shown that grain-size distribution (GSD) rapidly becomes a reflection of the gas-density distribution, irrespective of the shape of the initial GSD. This result is obtained by modelling ISM turbulence as a Markov process, which in the special case of an Ornstein-Uhlenbeck process leads to a lognormal gas-density distribution, consistent with numerical simulations of isothermal compressible turbulence. This yields an approximately lognormal GSD; the sizes of dust grains in cold ISM clouds may thus not follow the commonly adopted power-law GSD with index -3.5, but corroborates the use of a log-nomral GSD for large grains, suggested by several studies. It is also concluded that the very wide range of gas densities obtained in the high Mach-number turbulence of molecular clouds must allow formation of a tail of very large grains reaching radii of several microns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源