论文标题
因果亚组分析的倾向评分加权
Propensity Score Weighting for Causal Subgroup Analysis
论文作者
论文摘要
比较有效性研究的一个共同目标是估计治疗对患者预先指定的亚群的影响。尽管在医学研究中广泛使用,但这种亚组分析的因果推断方法仍然不发达,尤其是在观察性研究中。在本文中,我们开发了一套分析方法和可视化工具,用于因果亚组分析。首先,我们介绍了亚组加权平均治疗效果的估计,并提供相应的倾向得分加权估计器。我们表明,在亚组界限内平衡协变量是亚组因果效应估计量的偏差。其次,我们设计了一个新的诊断图-Connect-S图 - 用于可视化亚组协变量平衡。最后,我们建议使用重叠加权方法在子组中实现精确的平衡。我们进一步提出了一种结合重叠加权和拉索的方法,以平衡亚组分析中的偏差变化权衡。提供了广泛的仿真研究,以将所提出的方法与几种现有方法进行比较。我们将提出的方法应用于子宫肌瘤(比较)注册表数据的以患者为中心的结果,以评估子宫肌瘤的替代管理选择,以减轻症状和生活质量。
A common goal in comparative effectiveness research is to estimate treatment effects on pre-specified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal subgroup analysis. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we design a new diagnostic graph -- the Connect-S plot -- for visualizing the subgroup covariate balance. Finally, we propose to use the overlap weighting method to achieve exact balance within subgroups. We further propose a method that combines overlap weighting and LASSO, to balance the bias-variance tradeoff in subgroup analysis. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the Patient-centered Results for Uterine Fibroids (COMPARE-UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.