论文标题
在论证中提取隐式主张的命题
Extracting Implicitly Asserted Propositions in Argumentation
论文作者
论文摘要
争论适应各种修辞手段,例如问题,报告的言语和要求。这些言辞工具通常相当隐含地自称是有争议的,因此理解它们的真实含义是正确理解某些论点的关键。但是,大多数论点挖掘系统和计算语言学研究很少关注论证中隐式主张的主张。在本文中,我们研究了用于提取命题的广泛计算方法,这些命题在问题,报告的语音和论证中的要求中暗示。通过在2016年美国总统辩论和在线评论的语料库中评估模型,我们证明了计算模型的有效性和局限性。我们的研究可能会为论证挖掘的未来研究和论证上的这些修辞手段的语义提供信息。
Argumentation accommodates various rhetorical devices, such as questions, reported speech, and imperatives. These rhetorical tools usually assert argumentatively relevant propositions rather implicitly, so understanding their true meaning is key to understanding certain arguments properly. However, most argument mining systems and computational linguistics research have paid little attention to implicitly asserted propositions in argumentation. In this paper, we examine a wide range of computational methods for extracting propositions that are implicitly asserted in questions, reported speech, and imperatives in argumentation. By evaluating the models on a corpus of 2016 U.S. presidential debates and online commentary, we demonstrate the effectiveness and limitations of the computational models. Our study may inform future research on argument mining and the semantics of these rhetorical devices in argumentation.