论文标题
Wolfram:使用可编程地址解码器增强电阻记忆中的磨损水平和容错性
WoLFRaM: Enhancing Wear-Leveling and Fault Tolerance in Resistive Memories using Programmable Address Decoders
论文作者
论文摘要
电阻记忆的寿命有限,这是由于写入耐力和高度不均匀的写入访问模式所致。减轻与耐力相关的内存故障的两种主要技术是1)磨损级别,以均匀分配整个内存的写入,以及2)容错,以纠正内存单元格失败。但是,延长现有电阻记忆的寿命的主要开放挑战之一是使这两种技术都可以无缝和高效地一起工作。为了应对这一挑战,我们提出了Wolfram,这是一种新机制,通过使用可编程的电阻地址解码器(PRAD)将磨损水平和容错技术以低成本结合起来。 Wolfram的关键思想是使用PRAD实施1)一种新的有效的磨损水平机制,该机制可以将访问权限访问到即时的随机物理位置,以及2)一种新的有效的容错容忍机制,该机制通过将失败的存储器块重新启动到可用的物理位置,从故障中恢复过来。我们的评估表明,对于基于108个细胞耐力的基于相变的系统(PCM)系统,Wolfram将记忆寿命提高了68%,而基线实现了最好的最新磨损水平和故障校正机制。 Wolfram的平均 /最差案例性能和能量开销分别为0.51% / 3.8%和0.47% / 2.1%。
Resistive memories have limited lifetime caused by limited write endurance and highly non-uniform write access patterns. Two main techniques to mitigate endurance-related memory failures are 1) wear-leveling, to evenly distribute the writes across the entire memory, and 2) fault tolerance, to correct memory cell failures. However, one of the main open challenges in extending the lifetime of existing resistive memories is to make both techniques work together seamlessly and efficiently. To address this challenge, we propose WoLFRaM, a new mechanism that combines both wear-leveling and fault tolerance techniques at low cost by using a programmable resistive address decoder (PRAD). The key idea of WoLFRaM is to use PRAD for implementing 1) a new efficient wear-leveling mechanism that remaps write accesses to random physical locations on the fly, and 2) a new efficient fault tolerance mechanism that recovers from faults by remapping failed memory blocks to available physical locations. Our evaluations show that, for a Phase Change Memory (PCM) based system with cell endurance of 108 writes, WoLFRaM increases the memory lifetime by 68% compared to a baseline that implements the best state-of-the-art wear-leveling and fault correction mechanisms. WoLFRaM's average / worst-case performance and energy overheads are 0.51% / 3.8% and 0.47% / 2.1% respectively.