论文标题

频道频繁的注意力网络,用于视频人的检索

Channel Recurrent Attention Networks for Video Pedestrian Retrieval

论文作者

Fang, Pengfei, Ji, Pan, Zhou, Jieming, Petersson, Lars, Harandi, Mehrtash

论文摘要

全部关注,该注意力为输入特征图的每个元素产生注意值,已成功证明对视觉任务有益。在这项工作中,我们提出了一个完全注意的网络,称为{\ it通道经常注意网络},以进行视频行人检索的任务。主要注意单元\ textIt {通道复发注意力}通过通过复发的神经网络共同利用空间和通道模式来识别框架级别的注意图。该频道的重复关注旨在通过经常接收和学习空间向量来建立全球接受场。然后,使用一个\ textit {set contregation}单元格生成紧凑的视频表示。经验实验结果表明,提出的深网的表现优于标准视频人员检索基准的当前最新结果,并且一项彻底的消融研究表明了所提出的单元的有效性。

Full attention, which generates an attention value per element of the input feature maps, has been successfully demonstrated to be beneficial in visual tasks. In this work, we propose a fully attentional network, termed {\it channel recurrent attention network}, for the task of video pedestrian retrieval. The main attention unit, \textit{channel recurrent attention}, identifies attention maps at the frame level by jointly leveraging spatial and channel patterns via a recurrent neural network. This channel recurrent attention is designed to build a global receptive field by recurrently receiving and learning the spatial vectors. Then, a \textit{set aggregation} cell is employed to generate a compact video representation. Empirical experimental results demonstrate the superior performance of the proposed deep network, outperforming current state-of-the-art results across standard video person retrieval benchmarks, and a thorough ablation study shows the effectiveness of the proposed units.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源